

circRNA Isolation Kit

Cat. No. G4001

Store all components except RNA Purification Magnetic Beads at -20°C. Store RNA Purification Magnetic Beads at 4°C.

Component	Quantity	Cat. No.
Poly(A) Polymerase, E. coli	25 µl	E099-1
10X Poly(A) Polymerase, E. coli Reaction Buffer	1.0 ml	E099-2
ATP (10 mM)	50 µl	E099-3
RNA Purification Magnetic Beads	5 ml	G971
RNase R	50 µl	E049-1
10X RNase R Reaction Buffer	1.0 ml	E049-2
RNaseOFF Ribonuclease Inhibitor	100 µl	G138

Description

abm's circRNA Isolation Kit allows for the enrichment of a novel class of RNA called circular RNA from a total RNA sample. Poly(A) Polymerase, *E. coli* catalyzes the addition of adenosine residues to the 3' termini of all linear RNAs – including structured RNAs. This results in RNAs exhibiting a long, 3' unstructured overhang which is optimally bound by RNase R. RNase R can then illicit 3' to 5' exonuclease activity resulting in improved degradation of linear RNAs which contributes to higher purity circRNAs.

Protocol

Additional Materials Required (not included)

- Freshly prepared 80% ethanol
- Nuclease-free water
- Magnetic separation rack

Note: Before starting, prepare 80% ethanol fresh prior to each experiment.

Part A – Poly(A) Addition

1. In a sterile tube, set up the following reaction and incubate at 37°C for 30 min using a thermal cycler.

Component	Volume
Total RNA	5 µg
10X Poly(A) Polymerase, E. coli Reaction Buffer	2 µl
ATP (10mM)	2 µl
Poly(A) Polymerase, E. coli	1 µl
Nuclease-free water	Up to 20 µl

2. Remove sample from thermal cycler and place on ice until the next step.

Part B – Total RNA Purification using Magnetic Beads

- 1. Remove RNA Purification Magnetic Beads from 4°C and incubate at room temperature for 30 min. Vortex the beads thoroughly for 30 s.
- 2. Bring sample volume from Part A to 50 μ l by adding an appropriate amount of Nuclease-free water. Next, add 90 μ l of RNA Purification Magnetic Beads (at a 1.8X bead to sample ratio) and pipette ten times to thoroughly mix. Incubate at room temperature for 10 min.
- 3. Place tube onto magnetic rack for 5 min or until the solution becomes clear.
- 4. Keep the tube on the magnetic rack; carefully remove the supernatant by pipette and discard.
- 5. Keep the tube on the magnetic rack; add 200 µl of freshly prepared 80% ethanol. Dispense the liquid onto the opposite side of the tube in order to avoid disturbing the beads. Incubate 30 s and then remove the supernatant by pipette. Repeat for a total of two washes.
- Keep the tube on the magnetic rack; remove residual ethanol by pipette and then open tube caps to air dry for 2-5 min. Monitor the appearance of the beads closely.
 Beads are ready for elution when they appear "matte." Beads that appear "shiny" still contain residual ethanol; beads that appear "cracked" have been over-dried. The latter two scenarios will result in contamination and reduced yield.
- Add 23 µl of Nuclease-free water to the RNA Purification Magnetic Beads and remove the tube from the magnetic rack. Pipette the mixture thoroughly to resuspend. Incubate at room temperature for 5 min.
- Place the tube on the magnetic rack for 5 min or until the solution becomes clear. Carefully remove the supernatant by pipette and transfer into a new sterile tube.
 Ensure no bead carry-over. If beads become dislodged, simply mix the sample again and place tube back onto the magnetic rack for separation.
- 9. Place sample on ice until the next step.

Part C – RNase R Degradation of Linear RNAs

1. In a sterile tube, set up the following reaction and incubate at 37°C for 2-3 h using a thermal cycler.

Component	Volume
Purified RNA from Part B	20 µl
10X RNase R Reaction Buffer	5 µl
RNaseOFF Ribonuclease Inhibitor	1.5 µl
RNase R	2 µl
Nuclease-free water	Up to 50 µl

2. Remove samples from thermal cycler and place on ice until the next step.

Part D – circRNA Purification using Magnetic Beads

- 1. Remove RNA Purification Magnetic Beads from 4°C and incubate at room temperature for 30 min. Vortex the beads thoroughly for 30 s.
- 2. Add 90 µl of RNA Purification Magnetic Beads (at a 1.8X bead to sample ratio) to sample from Part C and pipette ten times to thoroughly mix. Incubate at room temperature for 10 min.
- 3. Follow Steps 3-8 outlined in Part B.
- 4. Purified circRNA is ready for downstream applications or long term storage at -80°C.

General Notes

NGS Applications

• We recommend increasing the amount of Total RNA to 10 μ g in Part A and increasing the amount of RNase R to 4 μ l in Part C.

RNA Purification Magnetic Beads

- Store RNA Purification Beads tightly sealed at 4°C upon arrival. Do not freeze!
- Ensure beads come to room temperature (20-25°C) before use; using or storing beads at the incorrect temperature will result in lower yield and difficulty with handling.

<u>RNase R</u>

 Keep in mind that circRNAs represent a small proportion of total RNA (~0.1-0.01%), therefore RNase R treatment will most likely result in low levels of RNA, possibly undetectable by most methods.